Exercice 1.

Soient A, B et C trois sev d'un \mathbb{K} -ev E. On note

$$F = (A \cap B) + (A \cap C), G = A \cap (B + (A \cap C))$$

et $H = A \cap (B + C)$.

- 1. Montrer que F et G sont des sev de H.
- **2**. Etablir que F = G.
- **3**. A-t-on toujours F = G = H?

Exercice 2.

Soient E un \mathbb{K} -ev et S un système de n vecteurs de rang s. On extrait de S un système S' de r vecteurs de rang s'. Etablir que

$$s' \ge r + s - n$$
.

Exercice 3.

Soit \mathbb{K} un corps et E un \mathbb{K} -ev de dimension finie n.

- 1. Lorsque $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , établir par des arguments topologiques que E n'est pas réunion dénombrable de sev stricts.
- **2**. Lorsque \mathbb{K} est infini non dénombrable, établir que E n'est pas réunion dénombrable de sev stricts.

Exercice 4.

Soient E un \mathbb{K} -ev, F et G deux sev de E. Montrer que F et G admettent un supplémentaire commun dans E si et seulement si dim(F) = dim(G).

Exercice 5.

Soient $n \in \mathbb{N}$, $E = \mathbb{R}^n$, $(x_i)_{1 \le i \le n}$ une famille libre de E et $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$. On pose

$$y = \sum_{k=1}^{n} \alpha_k x_k.$$

Donner une *condition nécessaire et suffisante* sur les α_i pour que $(y + x_i)_{1 \le i \le n}$ soit une famille libre.

Exercice 6.

Soient n un entier naturel non nul et $A \in \mathfrak{M}_n(\mathbb{R})$. On pose

$$E = \{ X \in \mathfrak{M}_n(\mathbb{R}) \mid X + {}^t X = 2\operatorname{tr}(X)A \}.$$

- 1. Prouver que *E* est un espace vectoriel.
- **2**. Quelle est la dimension de *E* ?

Exercice 7.

Soient $n \ge 1$, A et B deux matrices de $\mathfrak{M}_n(\mathbb{R})$. Déterminer les matrices $X \in \mathfrak{M}_n(\mathbb{R})$ solutions de l'équation

$$X + \operatorname{tr}(X)A = B$$
.

Exercice 8.

Soit $A \in \mathfrak{M}_n(\mathbb{R})$. Montrer qu'il existe une matrice U appartenant à $\mathfrak{M}_n(\mathbb{R})$ telle que AUA = A.

Exercice 9.

Soit $A \in \mathfrak{M}_n(\mathbb{C})$. Etablir que $\operatorname{tr}(A) = 0$ *si et seulement si* A est semblable à une matrice de diagonale nulle.

Exercice 10.

Soient A et B dans $\mathfrak{M}_n(\mathbb{C})$ et $M \in \mathfrak{M}_{2n}(\mathbb{C})$ définie par

$$M = \left(\begin{array}{cc} A & A \\ A & A + B \end{array} \right).$$

- 1. Déterminer le rang de M en fonction de ceux de A et B
- **2**. En cas d'inversibilité, exprimer l'inverse de M en fonction de A et B.

Exercice 11.

Soient A, B, C et D appartenant à $\mathfrak{M}_n(\mathbb{R})$ et

$$M = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right).$$

On suppose que $A \in GL_n(\mathbb{R})$. Etablir que

$$rg(M) = n$$
 si et seulement si $D = CA^{-1}B$.

Exercice 12.

Soit $(u, v) \in (\mathcal{L}(E))^2$, tels que $u^2 = u$ et $v \circ u = 0$. Montrer que

$$\operatorname{Im}(u+v) = \operatorname{Im}(u) + \operatorname{Im}(v).$$

Exercice 13.

Soient E un \mathbb{R} -ev de dimension finie et $u \in \mathcal{L}(E)$. Etablir que la suite

$$(\operatorname{rg}(u^k) - \operatorname{rg}(u^{k+1}))_{k \in \mathbb{N}}$$

est décroissante.

Exercice 14.

Soient \mathbb{K} un corps infini non dénombrable, E un \mathbb{K} -ev de dimension finie n et $f \in \mathcal{L}(E)$. Pour tout x dans E, on note

$$E_x = \{ P(f)(x) \mid P \in \mathbb{K}[X] \}$$
 et $f_x = f \Big|_{E_x}^{E_x}$.

- 1. Etablir que E n'est pas réunion dénombrable de sev stricts
- **2**. Vérifier que $\mu_{f_x}|\mu_f$.
- **3**. En déduire l'existence de $x \in E$ tel que $\mu_{f_x} = \mu_f$.
- **4.** Soit $p \in \mathbb{N}$. Etablir que la famille $(id_E, f, ..., f^{p-1})$ est liée si et seulement si

$$\forall x \in E, (x, f(x), \dots, f^{p-1}(x))$$
 est liée.

Exercice 15.

Soient E un \mathbb{K} -ev de dimension finie n et $f \in \mathcal{L}(E)$. Etablir qu'il n'existe qu'un nombre fini de sev de E de la forme

$$Ker(P(f))$$
 ou $Im(P(f))$

avec $P \in \mathbb{K}[X]$.

Exercice 16.

Soient $\mathbb K$ un corps, E un $\mathbb K$ -ev de dimension finie n et $f \in \mathcal L(E)$. On note μ_f (resp. χ_f) le polynôme minimal (resp. caractéristique) de f. Pour tout x dans E, on note

$$E_x = \{ P(f)(x) \mid P \in \mathbb{K}[X] \} \text{ et } f_x = f \Big|_{E_x}^{E_x}.$$

On va établir de deux manière l'existence de $x_0 \in E$ tel que $\mu_{f_{x_0}} = \mu_f$.

- 1. Par un lemme sur les réunions au plus dénombrables de sev stricts dans le cas où $\mathbb K$ est inifini non dénombrable.
- **1.a.** Etablir que E n'est pas réunion dénombrable de sev stricts.
- **1.b.** Vérifier que $\mu_{f_x} | \mu_f$.
- **1.c.** En déduire l'existence de $x_0 \in E$ tel que $\mu_{f_{x_0}} = \mu_f$.
- 2. Par l'arithmétique dans le cas général.
- **2.a.** On note $\mu_f = P_1^{\alpha_1} P_2^{\alpha_2} \cdots P_r^{\alpha_r}$ la décomposition de μ_f en produit de puissances d'irréductibles sur \mathbb{K} . Justifier que $E_i = \operatorname{Ker}(P_i^{\alpha_i}(f))$ est non nul pour tout $1 \le i \le r$.
- **2.b.** Justifier l'existence de $x_i \in E_i$ tel que $\mu_{f_{x_i}} = P_i^{\alpha_i}$.
- **2.c.** On pose $x_0 = x_1 + x_2 + \cdots + x_r$. Vérifier que $\mu_{f_{x_0}} = \mu_f$.