Exercice 1.

On note *E* l'ensemble des $f \in \mathcal{C}^2(\mathbb{R}_+, \mathbb{R})$ telles que :

$$\forall x \in \mathbb{R}_+, f''(x) - (1 + x^4) f(x) = 0.$$

1. Montrer que E contient une unique fonction f_0 telle que

$$f_0(0) = 1$$
, $f_0'(0) = 1$.

- **2**. Montrer que f_0^2 est convexe.
- 3. Etablir que

$$\forall t \in \mathbb{R}_+, f_0(t) \ge 1.$$

4. Montrer que $1/f_0^2$ est intégrable sur \mathbb{R}_+ . On note, pour tout $x \in \mathbb{R}_+$:

$$f_1(x) = f_0(x) \int_x^{+\infty} \frac{dt}{f_0^2(t)}$$

- **5**. Démontrer que $f_1 \in E$.
- **6.** Etablir que $f_1' \le 0$ et f_1 est bornée.
- 7. Quels sont les éléments bornés de E ?

Exercice 2.

On se propose de calculer la valeur de l'intégrale de Di-

1. Résoudre l'équation

$$y'' + y = \frac{1}{x}$$

par la variation de la constante sur \mathbb{R}_+^* .

2. Pour tout $x \in \mathbb{R}+$, on pose

$$\varphi(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt.$$

- **2.a.** Etablir que φ est de classe \mathscr{C}^2 sur $]0,+\infty[$ et trouver une équation différentielle linéaire du second ordre dont φ est solution sur $]0,+\infty[$.
- 2.b. Montrer que

$$\lim_{x \to +\infty} \varphi(x) = 0.$$

- **2.c.** En déduire une expression sous forme intégrale de $\varphi(x)$ pour tout x > 0.
- 3. En déduire la valeur de

$$I = \int_0^{+\infty} \frac{\sin(t)}{t} dt.$$

Exercice 3.

Soit $(a,b) \in \mathbb{R}^2$. Montrer qu'il existe une unique solution sur \mathbb{R} , ayant des asymptotes en $+\infty$ et $-\infty$, à l'équation

$$y'' - 4y = a|t| + b.$$

Exercice 4.

Soient p et q appartenant à $\mathscr{C}^0([0,1],\mathbb{R})$ telles que $q \le 0$. On considère l'équation différentielle

(E):
$$y'' + py' + qy = 0$$
.

Soit $(a, b) \in \mathbb{R}^2$. Montrer l'existence et l'unicité d'une solution f de (\mathbf{E}) telle que f(0) = a et f(1) = b.

Exercice 5.

Trouver $x \mapsto p(x)$ pour que l'équation

$$y'' + y' + p(x)y = 0$$

admette deux solutions y_1 et y_2 non constantes telles que $y_2 = y_1^2$. Résoudre alors l'équation.

Exercice 6.

Résoudre sur ℝ le problème de Cauchy

$$y'' - y = \frac{2e^x}{e^x + 1}$$
, $y(0) = 0$, $y'(0) = 0$.

Exercice 7.

Déterminer les solutions définies sur $\mathbb R$ de l'équation

(E) :
$$v' = |v - x|$$

Exercice 8.

Soit f une solution sur $\mathbb R$ non identiquement nulle de l'équation

(*E*):
$$y'' + e^t \cdot y = 0$$

Montrer que l'ensemble des zéros de f est dénombrable

Exercice 9.

Résoudre $y'' - 2y' + 2y = 2xe^x \cos(x)$.

Exercice 10.

Soient $E=\mathscr{C}^\infty(\mathbb{R},\mathbb{R})$ et, pour $f\in E,$ $\mu(f)$ l'élément de E défini par :

$$\forall x \in \mathbb{R}, \ \mu(f)(x) = f'(x) - xf(x).$$

- 1. Montrer que $\mu \in \mathcal{L}(E)$ et déterminer $\text{Ker}(\mu)$.
- **2**. L'application μ est-elle surjective ?
- **3**. Pour tout $g \in E$, déterminer $\mu^{-1}(\{g\})$.
- **4**. Déterminer $\mu \circ \mu$.
- 5. Résoudre

$$y'' - 2xy' + (x^2 - 1)y = 0.$$

6. Résoudre $\mu^n(f) = 0$, pour tout $n \in \mathbb{N}^*$.

Exercice 11.

Soit $f\in\mathscr{C}^1(\mathbb{R},\mathbb{C})$, 1-périodique. Déterminer f sachant qu'existent $c\in\mathbb{C}$ et $d\in\mathbb{R}$ tels que

$$\forall x \in \mathbb{R}, \ f'(x) = c \cdot f(x+d)$$

Exercice 12.

Déterminer les $f \in \mathcal{C}^4(\mathbb{R}, \mathbb{R})$ solutions de

$$y^{(4)} + y'' + y = |\sin(x)|$$